7565

Biogeosciences Discuss., 6, 7565–7597, 2009 www.biogeosciences-discuss.net/6/7565/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences

Regional and temporal patterns of litterfall in tropical South America

J. Chave¹, D. Navarrete^{2,3}, S. Almeida⁴, E. Álvarez³, L. E. O. C. Aragão⁵, D. Bonal⁶, P. Châtelet⁷, J. Silva Espejo⁸, J.-Y. Goret⁶, P. von Hildebrand², E. Jiménez³, S. Patiño³, M. C. Peñuela³, O. L. Phillips⁹, P. Stevenson¹⁰, and Y. Malhi⁵

 ¹Laboratoire Evolution et Diversité Biologique, UMR 5174 CNRS/UPS, Toulouse, France
 ²Fundación Puerto Rastrojo, Bogotá, Colombia
 ³Grupo de Estudio de Ecosistemas Terrestres Tropicales, Universidad Nacional de Colombia, Leticia, Colombia
 ⁴Museu Paraense Emilio Goeldi, 66077-530 Belem, Brazil
 ⁵Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
 ⁶INRA, UMR Ecologie des Forêts de Guyane, BP 709, 97387 Kourou Cedex, French Guiana
 ⁷CNRS-Guyane, Station d'Etude des Nouragues, UPS 2561, French Guiana

⁸Universidad San Antonio Abad. Cusco. Peru

⁹ Earth and Biosphere Institute, School of Geography, University of Leeds, Leeds LS2 9JT, UK ¹⁰ Universidad de los Andes, Bogotá, Colombia

Received: 16 December 2008 – Accepted: 14 January 2009 – Published: 27 July 2009

Correspondence to: J. Chave (chave@cict.fr)

Published by Copernicus Publications on behalf of the European Geosciences Union.

BGD

6, 7565-7597, 2009

South American litterfall

J. Chave et al.

Abstract

The production of aboveground soft tissue represents an important share of total net primary production in tropical rain forests. Here we draw from a large number of published and unpublished datasets (*n*=81 sites) to assess the determinants of litterfall variation across South American tropical forests. We show that across old-growth tropical rainforests, litterfall averages 8.61±1.91 Mg/ha/yr. Secondary forests have a lower annual litterfall than old-growth tropical forests with a mean of 8.01±3.41 Mg/ha/yr. Annual litterfall shows no significant variation with total annual rainfall, either globally or within forest types. It does not vary consistently with soil type, except in the poorest soils (white sand soils), where litterfall is significantly lower than in other soil types (5.42±1.91 Mg/ha/yr). Litterfall declines significantly with increasing N:P. We also study the determinants of litterfall seasonality, and find that it does not depend on annual rainfall or on soil type. However, litterfall seasonality is significantly positively correlated with rainfall seasonality. Finally, we assess how much carbon is stored in repro-

¹⁵ ductive organs relative to photosynthetic organs. Mean leaf fall is 5.74±1.83 Mg/ha/yr (71% of total litterfall). Mean allocation into reproductive organs is 0.69±0.40 Mg/ha/yr (9% of total litterfall). The investment into reproductive organs divided by leaf litterfall is negatively related to the N:P ratio, suggesting that on poor soils, the allocation to photosynthetic organs is prioritized over that to reproduction. Finally, we discuss the
 ²⁰ ecological and biogeochemical implications of these results.

1 Introduction

25

Since the early 1950s, an enormous amount of research has been devoted to the measurement of net primary production (NPP) in ecosystems, the amount of carbon that is fixed from the atmosphere into new organic matter. Of the 720 references reported in the Osnabrück dataset (Esser et al., 1997), only 21 were collected in tropical forest environments, an astonishingly small figure given that tropical rainforests account for

BGD 6,7565-7597,2009 South American litterfall J. Chave et al. **Title Page** Abstract Introduction Conclusions References **Figures** Tables Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

a third of global terrestrial NPP, and savannas another quarter (Grace, 2004). Since that time, much progress has been made to quantify the carbon cycle in tropical forest ecosystems (Malhi et al., 2002, 2009; Keller et al., 2004), and there is still much activity around the development of global databases of the carbon cycle in terrestrial ⁵ environments (Luyssaert et al., 2007).

In one of the most thorough recent reappraisals of tropical forest NPP quantification, Clark et al. (2001) compiled data from 39 tropical forest sites and they estimated total tropical forest NPP. Their estimates ranged between 3.1 and 21.7 Mg C/ha/yr, of which, 0.9 to 6.0 Mg C/ha/yr were allocated into soft tissues (leaves, reproductive organs and twigs). Tropical forest NPP was found to be poorly correlated with mean annual temperature and with annual rainfall (see also Schuur, 2003; Del Grosso et al., 2008). In a previous contribution, Malhi et al. (2004) explored the regional variation

10

of the fraction of carbon fixed aboveground into woody parts in tropical South America (trunks and branches, wNPP). They focused on 104 permanent sampling plots
where trunk diameter had been measured several times, and estimated the annual amount of carbon fixed into wood. Their major finding was that wNPP varied dramatically at the regional scale, and that a large part of this regional variation was due to soil type. Using the data available at 10 tropical forest sites in Amazonia, Aragão et al. (2009) showed that total NPP ranged between 9.3 and 17.0 Mg C/ha/yr, with a mean of 12.8 Mg C/ha/yr, much greater than recent regional tropical forest estimates (e.g. Luyssaert et al., 2007; Del Grosso et al., 2008).

Clark et al. (2001) also suggested that NPP was not strongly correlated with total litterfall, as had been previously suggested by Bray and Gorham's (1964) global model. They however acknowledged that their estimates were based on an indirect estimation

of several key components of NPP. For Amazonian forests, Aragão et al. (2009) provide a most useful perspective on this question. Their analysis strongly supports Bray and Gorham's (1964) model: total NPP is consistently close to 3.1 times total litterfall. If their finding is general, this is a strong motivation for summarizing our current knowledge on the regional and temporal variation of total litterfall in the Amazon.

BGD 6, 7565–7597, 2009 **South American**

J. Chave et al.

litterfall

In the present contribution, we focus on the amount of carbon fixed into organs with short residence time, such as leaves, reproductive organs (flowers, fruits), and small branches. Like in most previous analyses, we assume that the ecosystem is at equilibrium, that is, the flux of carbon into this pool of carbon equals the flux of carbon outside of this flux. Then, the amount of NPP allocated annually to leaves, reproductive organs, and small branches should be equal to the annual litterfall. Leaf production and other components of litterfall should depend upon a large suite of environmental and geographical factors. In tropical South America, the determinants of this spatial variation remain poorly studied, and it is impossible to get even a superficial sense of the changes in litterfall production across environments and across regions. The goal of the present manuscript is to review the recent literature and explore whether available data are sufficient to draw general rules for the spatial variation of litterfall

We here bring together a large number of published and unpublished litterfall datasets, including a wide range of environmental conditions, such as terra firme rainforests, flooded rainforests, dry rainforests, and montane forests. We also partition litterfall into its main three components (leaves, fruits and flowers, and twigs, see Proctor 1983). We use this dataset to assess what determines the spatial and temporal variability in litterfall. Specifically, we address the following questions: (1) Is annual litterfall determined by edaphic or climatic factors? (2) Is the seasonality of litterfall determined by edaphic or climatic factors?, and (3) Does plant investment into photosynthetic organs and reproductive organs depend on environmental factors? Finally, we discuss the implications of our findings.

across South America.

BGD 6,7565-7597,2009 South American litterfall J. Chave et al. **Title Page** Abstract Introduction Conclusions References **Figures** Tables 14 Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

2 Methods

2.1 Dataset

We combed the literature for publications reporting figures on litterfall in tropical South America. In our analysis, we included the studies in central Panama, but not those ⁵ of the rest of Central America. We also included a number of unpublished data. For each study, we reported the different parts of litterfall, including leaves, branches (usually less than 2 cm in diameter), flowers, fruits, and others, if available (Proctor, 1983). Litterfall was collected in litter-traps set up ca. 1-2 m above the ground to avoid disturbance by large mammals. We recorded the duration of the experiment, number of traps, and size of the traps. All litterfall figures (annual and monthly) were converted 10 into Mg/ha/yr of dry biomass. We did not correct these figures for a possible loss to herbivory between censuses (Leigh, 1999; Clark et al., 2001), because this would have entailed making additional uncontrolled assumptions. Our litterfall estimates did not incorporate coarse woody debris, which may account for a sizeable fraction of carbon loss from the live vegetation (Chambers et al., 2001; Nepstad et al., 2002). In most cases, these estimates did not incorporate palm leaves which tend to be too large to be trapped by litter-traps, and the fruits and leaves produced by understory plants. This may result in a significant under-estimation of litterfall. For instance, in a wet rain forest of Costa Rica, over 10% of the total leaf area was below 2 m above ground (Clark et

²⁰ al., 2008).

In total, we report on 29 published studies (64 sites) and 7 unpublished ones (17 sites). The 81 sites included in the present analysis are detailed in Table 1. All of these studies comply with the minimal conditions for litterfall sampling proposed by Proctor (1983). The sampling duration varied from 1 year to 7 years (mean across sites: 1.97 yr), and the total area sampled (number of litterfall traps multiplied by the size of these traps, in m²) varied from $1.92 \text{ to } 60 \text{ m}^2$ (mean across sites: 10.1 m^2), with each trap at least 0.25 m^2 in area.

To evaluate the seasonality of litterfall, we created a database including the monthly

litterfall data as reported in the published reports or in unpublished datasets. In a number of cases, these figures were reported in the form of figures. We scanned the figures, and retrieved the original data by digitizing the figure manually using the software Digitizelt, version 1.5.8 (http://www.digitizeit.de/).

5 2.2 Environmental variables

Environmental variables included in the present analysis are soil type (see also Malhi et al., 2004), and rainfall data. Soil type, when available, was deduced from the publications, and mostly based on the World Reference Base Soil Taxonomy (WRB, 2006). More details on the distribution, area, and chemical properties of these soils type in

- Amazonia are available in Quesada (2008; see also Quesada et al., 2009). We classified the sites into four main soil categories, roughly increasing in soil fertility (concentration of phosphorus and of exchangeable cations in the soil, Quesada et al., 2009):
 A) highly permeable infertile soils (arenosols and podzols); B) relatively infertile ancient soils (ferrasols); C) relatively fertile acidic soils (acrisols, plinthosols and alisols) and D)
- ¹⁵ fertile young or wet soils (cambisols, leptosols, histosols, gleysols or fluvisols). The one site with human-derived soil (archeo-anthrosol, CAX2 site: terra preta) was excluded from this classification.

When possible, we also reported the concentration of nitrogen and phosphorus in litterfall (N, P). The carbon to nitrogen ratio (C:N ratio) and the nitrogen to phospho²⁰ rus ratio (N:P ratio) measure the depletion of nitrogen in plants, and the depletion of phosphorus relative to nitrogen, respectively. These values are tightly correlated with the resource availability of the soil on which the plants grow (McGroddy et al., 2004; Ågren, 2008; Quesada, 2008). If only data on N and P concentrations were available in live leaves (see e.g. Fyllas et al., 2009), we made use of these figures instead to
²⁵ compute the N:P ratio. This overestimates the concentration of both N and P in the litter because some of the N and P in leaves is retranslocated before leaf abscission (Chuyong et al., 2000). However as the same proportion of N and P appears to be

similar in leaves and in litter. This finding is supported by a recent analysis at the scale of the entire Amazon (Quesada, 2008, chapt. 5). There, it was found that the correlation between leaf N and soil N was 0.33, while the correlation between leaf P and soil P was 0.56 (Kendall τ rank coefficient in both cases; values >0.19 are considered as significant).

Rainfall was derived from a climatic dataset that covers the period 1960–1998 (New et al., 1999), which minimizes the effects of interannual variability. For a few sites with strong climatic gradients near the Andes or close to the oceans, local meteorological data were preferred.

We also classified the data by forest type. The majority (*n*=51) was old-growth tropical rain forest (OG), but we also included a number of secondary (i.e. recently disturbed) rain forests (SEC, *n*=7), periodically or permanently flooded rainforest (FLO, *n*=10), montane rainforests (MON, *n*=5), and low vegetation (LOW, *n*=7). This last category is a composite of different vegetation types, including low vegetation growing on Colombian tepuis (Chiribiquete National Park), woodland savannas in Brazil and Colombia (cerrado), coastal oceanic vegetation in Brazil (restinga), and woodland savannas in Venezuela (caatinga).

2.3 Statistical analyses

We computed an index of seasonality as follows. We converted the month into a num-

- ²⁰ ber from 0 (1 January) to 330 (1 December). This represents the number of days elapsed since the beginning of the year but also an angle in degrees. We used this convention to represent the data using a polar plot (Fig. 1), where the litterfall of month *i* are plotted using a vector starting from (0,0), with a length equal to the litterfall at month *i* (in Mg/ha/yr) and the angle equal to $30 \times i$ (in degrees). The mean vector is obtained
- from the average of the projections along the *x* and the *y* axes. A similar analysis was performed to study the patterns of phenology across two seasonal rainforests (Zimmerman et al., 2007). The mathematical definition of the mean vector, $\mathbf{m} = (m_x, m_y)$,

BGD 6,7565-7597,2009 South American litterfall J. Chave et al. **Title Page** Abstract Introduction Conclusions References **Figures** Tables 14 Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

from the 12 monthly litterfall vectors L^{i} is:

$$m_x = \frac{1}{12} \sum_{i=0}^{11} \boldsymbol{L}^i \cos(30 \times i), \quad m_y = \frac{1}{12} \sum_{i=0}^{11} \boldsymbol{L}^i \sin(30 \times i)$$
(1)

Here, $L^{i} = ||L^{i}||$ is the absolute value of litterfall (in Mg/ha/yr) for month *i*. Using these definition, annual litterfall is $L = \sum_{i=0}^{11} L^{i}/12$. We finally define the seasonality index as follows

$$SL = \frac{\|\boldsymbol{m}\|}{L}$$

10

This index measures whether litterfall is evenly distributed throughout the year, in which case $SL \approx 0$. Alternatively, if litter falls only during one month, then $SL \approx 1$. Figure 1 represents polar plots with monthly litterfall data and the location of the mean vector, $\mathbf{m} = (m_x, m_y)$ for six of our study sites.

We also computed the seasonality in rainfall, based on monthly rainfall data, and called this parameter *SR*. Specifically, we defined *SR* as

$$SR = \frac{\|\boldsymbol{mr}\|}{R} \tag{3}$$

Where $mr = (mr_x, mr_y)$, denotes the monthly rainfall vector defined like in Eq. (1) by

$$mr_{x} = \sum_{i=0}^{11} R^{i} \cos(30 \times i), \quad mr_{y} = \sum_{i=0}^{11} R^{i} \sin(30 \times i)$$
(4)

Here, R^{i} is the monthly rainfall for month *i* measured in mm/mo. Then, annual rainfall is $R = \sum_{i=0}^{11} R^{i}$, a variable that appears in Eq. (3).

To investigate the relative investment into reproduction versus photosynthesis, we computed the *RL* ratio, the investment into reproductive organs divided by leaf fall. ²⁰ Hence a *RL* of 1 corresponds to an equal allocation into leaves and into reproductive organs. This excludes all non-photosynthetic organs which make up non-reproductive litterfall (twigs and trash) and provides a firm baseline for comparison across sites.

(2)

3 Results

3.1 Determinants of annual litterfall

In old-growth tropical rainforests, which cover the vast majority of the area under study, litterfall averaged 8.61±1.91 Mg/ha/yr (*n*=52, range: 5.19–12.47 Mg/ha/yr). We assessed Proctor's (1983) claim that one year of litterfall collection was enough to capture this variable. Of the 24 sites for which we had 2 years of data or more, mean interannual variability was found to be equal to 9.3% of the mean (range: 2–20%). Hence, one year of litterfall collection captures the long trend of litterfall within 10%.

Annual litterfall was higher in flooded forests than in old-growth tropical forests (Fig. 2), with a mean of 8.89±1.42 Mg/ha/yr (*n*=10, range: 6.6–11.21 Mg/ha/yr). Secondary forests had lower annual litterfall than old-growth tropical forests with a mean of 8.01±3.41 Mg/ha/yr (*n*=10, range: 5.01–14.74 Mg/ha/yr). The outlying secondary forest (14.74 Mg/ha/yr) was at the edge of the Mata de Piedade site, Atlantic rain forest of Brazil. Montane forests and low forests had lower mean annual litterfall (7.06±3.72 Mg/ha/yr and 3.01±1.67 Mg/ha/yr, respectively). Figure 3 shows the regional variation of litterfall across all the dataset (panel a) and restricted to oldgrowth forests (panel b).

Across forest types, annual litterfall showed no significant variation with total annual rainfall (Fig. 4). We excluded montane forests from this analysis because of the difficulty of estimating rainfall for these environments. With our analysis restricted to old-growth and flooded forests, the relationship between annual litterfall an annual rainfall was not significant (p=0.88 and p=0.23, respectively). Secondary forests showed a negative relationship of annual litterfall with annual rainfall, but this trend was not significant (p=0.18).

²⁵ We limited our analysis of annual litterfall versus soil type to old-growth moist lowland rainforests (Fig. 5). The poor soils are found in group A (including white sand soils), and litterfall was significantly lower than in other soil types ($5.27 \pm 1.86 \text{ Mg/ha/yr}$, n=6). Ferralsols (group B) also supported a forest producing less litterfall annually

BGD 6,7565-7597,2009 South American litterfall J. Chave et al. **Title Page** Abstract Introduction Conclusions References **Figures Tables** 14 Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

 $(7.13\pm2.53 \text{ Mg/ha/yr}, n=26).$

A similar analysis was performed by using the Redfield ratios C:N and N:P rather than soil types as independent variables (Ågren, 2008). Nitrogen-deprived plants have a large C:N ratio, while phosphorus-deprived plants have a large N:P ratio. Litterfall was found not to vary significantly with C:N across the entire dataset (Fig. 6, p=0.43, n=47), but it declined significantly with increasing N:P (Fig. 6, p=0.02, n=36).

3.2 Determinants of litterfall seasonality

Across all plots, the litterfall seasonality index *SL*, computed from 47 datasets, was of 0.166.

Litterfall seasonality was highest in small-statured forest sites (LOW), and lowest in montane and flooded forest sites (respectively MON and FLO, see Fig. 7). Litterfall seasonality did not depend on annual rainfall either across all datasets, or across oldgrowth forest sites only (in both cases, p>0.4, results not shown). Litterfall seasonality did not depend on soil type either.

15

5

Next we explored whether litterfall seasonality *SL* was related with the rainfall seasonality index *SR* (see the Methods section). We found a significantly positive relationship between litterfall seasonality and rainfall seasonality across all plots (p=0.02, n=47, Fig. 8). This result also held when the analysis was restricted to old-growth forests (p=0.05, n=27).

20 3.3 Carbon allocation in fast turnover plant organs

Finally, we asked how much carbon is stored in leaves and in reproductive organs. Across the dataset, $70.8\pm8.5\%$ of the litterfall was allocated to leaves (n=74, range 43.1–88.4\%). Mean leaf fall was 5.74 ± 1.83 Mg/ha/yr. Likewise, $8.9\pm5.6\%$ of the litterfall was allocated to reproductive organs (0.8-18%). Mean allocation into repro-

²⁵ ductive organs was 0.69±0.40 Mg/ha/yr. Notice however that some of these reproductive organs are designed to be eaten before they fall, hence our figure may be an

underestimate.

Next we computed the *RL* ratio for our sites (investment into reproductive organs divided by leaf litterfall). Across sites, this ratio ranged between 0.008 and 0.89 and was 0.135±0.119 on average (note that a ratio of 1 corresponds to an equal allocation into leaves and into reproductive organs). We did not find significant differences in the *RL* among forest types, except secondary forests where *RL* was significantly smaller (0.07±0.018).

The *RL* ratio varied across soil types. It was smallest on group-A soils $(RL=0.081\pm0.036, n=5)$, in acidic group-C soils $(RL=0.11\pm0.06, n=22)$, in group-

¹⁰ B ferralsols (RL=0.17±0.21, n=16), and finally in richer group-D soils (0.18±0.07, n=11). Given that frugivore activity also correlates positively with nutrients, the actual RL ratios probably increase more steeply than this with soil nutrients. This suggests that plants growing on rich soils invest proportionally more into reproduction than into photosynthesis. We confirmed this finding by regressing RL against the N:P ratio, and we found a significant negative relationship (p=0.07, Fig. 9).

4 Discussion

Assuming that litterfall biomass contains 47% of carbon (cross-site mean taken from Fyllas et al., 2009), the total annual litterfall corresponds to a mean of 4.0 Mg C/ha/yr in old-growth tropical forests. This is in line with previous estimates of Amazon-wide
allocation of carbon into the fast turnover carbon pool (Clark et al., 2001). If the overall figure of NPP around 12.8 Mg C/ha/yr is valid for Amazonian forests (Aragão et al., 2009), then, about a third of total NPP is invested into leaves, twigs and reproductive organs. The largest fraction of soft tissue allocation is invested into photosynthesis (ca. 71%). Another 9% is invested into reproduction. Following Clark et al. (2001), we
reemphasize that the estimates of litterfall reported here do not include large branches. Other methods may be used to assess how much carbon is released by branch falls, and this flux ranges between 0.4 and 1.8 Mg C/ha/yr (Chambers et al., 2001; Nepstad)

BGD 6,7565-7597,2009 South American litterfall J. Chave et al. **Title Page** Abstract Introduction Conclusions References **Figures Tables** Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

et al., 2002).

Most of the NPP eventually contributing to fine litterfall is allocated to leaves. Because leaf fall was estimated around 2.8 Mg C/ha/yr in the field, the stocks of photosynthetically active material available in the ecosystem may be estimated through two 5 independent methods. First, the stock of leaves at any one time fB is related to fNPP through the mean lifetime of leaves, denoted by τ , $\tau = fB/fNPP$. This parameter τ can be estimated directly for selected species, and it varies between 6 months for secondary moist tropical forests (n=20, Coley, 1988), and 25 months for old-growth tropical forests on poor soils (n=23, Reich et al., 2004). Taking an average value of $\tau=1$ yr, the stock of leaf biomass is estimated at 2.8 Mg C/ha, or 280 g C/m^2 . Alternatively, assuming 10 that the leaf area index of Amazonian forests is close to $5.4 \text{ m}^2/\text{m}^2$ (Malhi et al., 2009; Patiño et al., 2008; it may reach up to $7 \text{ m}^2/\text{m}^2$, see Clark et al., 2008), and that mean leaf-mass area (LMA) is around 47 gC/m^2 (cross-site mean taken from Fyllas et al., 2009), then leaf biomass should be 254 gC/m^2 . These two estimates tightly bracket the leaf biomass stocks in tropical rain forests. They also provide a consistency check 15 for some of the lesser known variables in Amazonian rainforests (mean leaf lifetime and leaf area index).

Secondary forests showed a peculiar signal compared with old-growth forests. Although the total annual litterfall was comparable between secondary forests and oldgrowth forests, the former were less seasonal, and they invested less in reproduction than in photosynthesis. Since secondary tropical forests are likely to cover an ever larger area than today, and will remain in secondary status for a long time (Chazdon, 2003; Feldpausch et al., 2005, 2007), it is critical to account for this in global carbon cycle models.

²⁵ There was a positive correlation between total litterfall and soil richness. This pattern may be underestimated in our analysis because herbivory is more active in the most fertile forests (Gentry and Emmons, 1987). Litterfall is already highest in forests growing on fertile soils (Fig. 5), and the amount of missed litterfall is difficult to quantify. Also, in many Amazonian forests, palms are an important fraction of the flora, and

BGD 6,7565-7597,2009 South American litterfall J. Chave et al. **Title Page** Abstract Introduction Conclusions References **Figures** Tables Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

these palms also contribute to number of bias to litterfall as estimated by litter traps. Large palms tend to trap litter in their crown hence reducing the amount of litter falling to the ground (Alvarez-Sánchez and Guevara, 1999). Furthermore, many palm species have big leaves that tend to be discarded in litter trap measurements, since they are considered as coarse debris. These effects add up in western Amazonian forests, and it would therefore be important to develop different methods for litter collection in these forests. Then the positive relationship between litterfall and soil richness (see Fig. 5) may be linear rather than curvilinear.

We found a weak but significant correlation between litterfall seasonality and rainfall seasonality. This may be explained by limitations in our dataset, or by biological mechanisms. In the former class, several unpublished datasets span unusual climatic years, such as the intense 2005 drought, and they may therefore be not representative of the long-term trend in seasonality. In the latter category of explanations, it is known that leaves are not shed or flushed only in response to variation in rainfall. Re-

- ¹⁵ cently developed methods may be used to estimate, even though indirectly, the large scale variation in leaf coverage seasonality. Myneni et al. (2007) used remote sensing imagery techniques to show how the seasonality in green leaf cover (leaf area index, or LAI) varies across the Amazon. They also sought for causal explanations for this variation. Specifically, they suggested that LAI was driven by the seasonality in solar
- radiation, rather than in rainfall. Indeed, solar radiation may be a foremost trigger for the flushing of new leaves during the dry season (see Wright and van Schaik, 1994), but also of leaf abscission, leading to concerted leaf fall. Phenological models (Morin and Chuine, 2005) remain poorly developed for tropical trees (Sakai, 2001), and this important challenge is ahead of us.
- Finally, our results shed light on carbon allocation strategies of tropical trees. We have shown that in poor soils, and especially in phosphorus-deprived environments, forests as a whole tend to invest less into the construction of reproductive organs relative to photosynthesis. This suggests that allocation into leaves (hence photosynthesis) is the priority for plants, but when resources are well supplied the excess in resources

BGD 6,7565-7597,2009 South American litterfall J. Chave et al. **Title Page** Abstract Introduction Conclusions References **Figures** Tables 14 Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

is made available for reproduction. Also, the plants of poor-soil communities seem to converge toward a low growth rate, low mortality rate and infrequent reproduction, a classic example of habitat filtering (Weiher and Keddy, 1999). The pattern we uncovered should however be considered critically. Tropical forest reproduction is often

- ⁵ characterized by infrequent events of mast-flowering, hence the *RL* ratio should show a high interannual variability. For instance, at the Nouragues site, one of the dominant tree families, the Chrysobalanaceae has a mast-fruiting strategy, and these species have only fruited once between 2001 and 2008 (Norden et al., 2007). Hence, it would be essential to rely on long-term monitoring programs to accurately measure *RL*. Also,
- the N:P ratio in litterfall is only a rough proxy of resource richness (Quesada, 2008). Finally, fruit production is clearly underestimated in palm-rich forests of western Amazon. More refined tests of this hypothesis should be based on more thorough and appropriate measurements of resources available to plants.

Acknowledgements. Some of the unpublished datasets were funded through the European
 ¹⁵ Union funded PAN-AMAZONIA programme, a UK Natural Environment Research Council (NERC) grant (NER/A/S/2003/00608/2) to Y Malhi, and continuous funding by the French CNRS (in part through the Amazonie program). We thank Angela Rozas Dávila, Judith Huamán Ovalle, Marlene Mamani Solórzano, Silverio Tera-Akami, Alfredo Andoke, José Agustín López, Germán Mejía, Eugenio Sánchez, Arcesio Pijachi and Hernán Machoa for their help in the

²⁰ field, and Carlos A. Quesada and Jon Lloyd for their help with the soil classification at our sites. Finally, we thank Jon Lloyd for useful comments on this manuscript.

References

- Ågren, G. I.: Stoichiometry and nutrition of plant growth in natural communities, Ann. Rev. Ecol. Evol. Syst, 39, 153–170, 2008.
- ²⁵ Alvarez-Sánchez, J. and Guevara, S.: Litter interception on *Astrocaryum mexicanum* Lieb. (Palmae) in a tropical rain forest, Biotropica, 31, 89–92, 1999
 - Aragão, L. E. O. C., Malhi, Y., Metcalfe, D. B., Espejo, J. E. S., Jiménez, E., Navarrete, D., Almeida, S., Costa A. C. L., Salinas, N., Phillips, O. L., Anderson, L. O., Baker, T. R., Dávila,

BGD											
6, 7565–7597, 2009											
South American litterfall											
J. Chave et al.											
Title	Page										
Abstract	Introduction										
Conclusions	References										
Tables	Figures										
14											
•	•										
Back	Close										
Full Scre	en / Esc										
Driptor frior	Norsian										
Printer-mer	iuly version										
Interactive	Discussion										
©	•										

A. R., Goncalvez, P. H., Junior, J. A. S., Meir, P., Monteagudo, A., Ovalle, J. H., Prieto, A., Quesada, C. A., Rudas, A., Solórzano, M. M., and Vasquez, R.: Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils, Biogeosciences Discuss., accepted, 2009.

- ⁵ Barbosa, R. A. and Fearnside, P. M.: Carbon and nutrient flows in an Amazonian forest: Fine litter production and composition at Apiau, Roraima, Brazil. Trop. Ecol., 37, 115–125, 1998. Barlow, J., Gardner, T. A., Ferreira, L. V., and Peres, C. A.: Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon, For. Ecol. Manag., 247, 91–97, 2007.
- ¹⁰ Brando, P. M., Nepstad, D. C., Davidson, E. A., Trumbore, S. E., Ray, D., and Camargo, P.: Drought effects on litterfall, wood production and belowground carbon cycling in an Amazonian forest: result of a throughfall reduction experiment, Phil. Trans. Roy. Soc. B., 363, 1839–1848, 2008.

Bray, J. R. and Gorham, E.: Litter production in forests of the world, Adv. Ecol. Res., 2, 101-

- ¹⁵ **157, 1964**.
 - Chambers J. Q., dos Santos J., Ribeiro R. J., and Higuchi N.: Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest, For. Ecol. Manage., 152, 73–84, 2001.

Chazdon, R. L.: Tropical forest recovery: Legacies of human impact and natural disturbances,

- ²⁰ Persp. Plant Ecol. Evol. Syst., 6, 51–71, 2003.
 - Chuyong, G. B., Newbery, D. M., and Songwe, N. C.: Litter nutrients and retranslocation in a central African rain forest dominated by ectomycorrhizal trees, New Phytol., 148, 493–510, 2000.

Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., Ni, J., and

- ²⁵ Holland, E. A.: Net primary production in tropical forests: an evaluation and synthesis of existing field data, Ecol. Applic., 11, 371–384, 2001.
 - Clark, D. B., Olivas, P. C., Oberbauer, S. F., Clark, D. A., and Ryan, M. G.: First direct landscapescale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity, Ecol. Let., 11, 163–172, 2008.
- ³⁰ Coley, P. D.: Effects of plant growth rate and leaf lifetime of the amount and type of anti-herbivore defense, Oecologia, 74, 531–536, 1988.
 - Cuevas, E. and Medina, E.: Nutrient dynamics within Amazonian forest ecosystems. I. Nutrient flux in fine litterfall and efficiency in nutrient utilization, Oecologia, 68, 4466–4472, 1986.

BGD											
6, 7565–7597, 2009											
South American litterfall J. Chave et al.											
Title	Page										
Abstract	Introduction										
Conclusions	References										
Tables	Figures										
14	►I.										
•	•										
Back	Close										
Full Scre	en / Esc										
Printer-frien	dly Version										
Interactive	Discussion										

Del Grosso, S., Parton, W., Stohlgren, T., Zheng, D. L., Bachelet, D., Prince, S., Hibbard, K., and Olson, R.: Global potential net primary production predicted from vegetation class, precipitation, and temperature, Ecology, 89, 2117–2126, 2008.

Dezzeo, N. and Chacon, N.: Litterfall and nutrient input in undisturbed and adjacent fire disturbed forests of the Gran Sabana, Southern Venezuela, Interciencia, 31, 894–899, 2006.

- turbed forests of the Gran Sabana, Southern Venezuela, Interciencia, 31, 894–899, 2006. Dantas, M. and Phillipson, J.: Litterfall and litter nutrient content in primary and secondary Amazonian "terra firme" rain forest, J. Trop. Ecol., 5, 27–36, 1989.
 - Esser, G., Lieth, H. F. H., Scurlock, J. M. O., and Olson, R. J.: Worldwide Estimates and Bibliography of Net Primary Productivity Derived from pre-1982 Publications, ORNL/TM-13485, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 1997.
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 1997. Feldpausch, T. R., Riha, S., Fernandes, E. C. M., and Wandelli, E. V.: Development of forest structure and leaf area in secondary forests regenerating on abandoned pastures in Central Amazonia. Earth Interacti., 9, 1–22, 2005.

Feldpausch, T. R., Prates-Clark, C. C., Fernandes, E. C. M., and Riha, S. J.: Secondary forest

- growth deviation from chronosequence predictions in central Amazonia, Glob. Change Biol., 13, 967–979, 2007.
 - Fittkau, E. J. and Klinge, H.: On biomass and trophic structure of the Central Amazonian rain forest ecosystem, Biotropica, 5, 2–14, 1973.

Fyllas, N. M., Patiño, S., Baker, T. R., Nardoto, G. B., Martinelli, L. A., Quesada, C. A., Paiva,

- R., Schwarz, M., Horna, V., Mercado, L. M., Santos, A. J. B., Arroyo, L., Jiménez, E. M., Luizão, F. J., Neill, D. A., Silva, N. M., Prieto, A., Rudas, A., Silviera, M., Viera, I., López-González, G., Malhi, Y., Phillips, O. L., and Lloyd, J.: Basin-wide variations in foliar properties of Amazon forest trees: Phylogeny, soils and climate, Biogeosciences Discuss., accepted, 2009.
- Gentry, A. H. and Emmons, L. H.: Geographical variation in fertility, phenology, and composition of the understory of neotropical forests, Biotropica, 19, 216–227, 1987
 Grace, J.: Understanding and managing the global carbon cycle, J. Ecol., 92, 189–202, 2004.

Keller, M., Alencar, A., Asner, G. P., Braswell, B., Bustamente, M., Davidson, E., Feldpausch, T., Fernandes, E., Goulden, M., Kabat, P., Kruijt, B., Luizão, F., Miller, S., Markewitz, D., Nobre,

A. D., Nobre, C. A., Priante Filho, N., da Rocha, H., Silva Dias, P., von Randow, C., and Vourlitis, G. L.: Ecological research in the Large-Scale Biosphere-Atmosphere experiment in Amazonie: early results, Ecol. Appl., 14, S3–S16, 2004.

Klinge, H. and Rodrigues, W. A.: Litter production in an area of Amazonian terra firme forest,

BGD 6, 7565–7597, 2009											
South American litterfall											
J. Chave et al.											
Title	Page										
Abstract	Introduction										
Conclusions	References										
Tables	Figures										
14											
•	•										
Back	Close										
Full Scre	een / Esc										
Printer-frier	ndly Version										
Interactive	Discussion										

Amazoniana, 1, 287-310, 1968.

5

10

25

Leigh Jr., E. G.: Tropical Forest Ecology. A View from Barro Colorado Island, Oxford University Press, Oxford, 245 pp., 1999.

Lips, J. M., Duivenvoorden, J. F.: Fine litter input to terrestrial humus forms in Colombian Amazonia, Oecologia, 108, 138–150, 1996.

- Luizão, R. C. C., Luizão, F. J., Paiva, R. Q., Monteiro, T. F., Sousa, L. S., and Kruijt, B.: variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest, Glob. Change Biol., 10, 592–600, 2004.
- Luizão, F. J.: Litter production and mineral element input to the forest floor in a Central Amazonian forest, GeoJournal, 19, 407–417, 1989.
- Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., et al.: CO₂ balance of boreal, temperate, and tropical forests derived from a global database, Glob. Change Biol., 13, 2509–2537, 2007.

Malhi, Y., Phillips, O. L., Baker, T. R., et al.: An international network to understand the biomass and dynamics of Amazonian forests (RAINFOR), J. Veg. Sci., 13, 439–450, 2002.

- Malhi, Y., Baker, T. R., Phillips, O. L., et al.: The above-ground coarse wood productivity of 104 Neotropical forest plots, Glob. Change. Biol., 10, 563–591, 2004.
- Malhi, Y., Aragão, L. E. O. C., Metcalfe, D. B., Paiva, R., Quesada, C. A., Almeida, S., Anderson, L., Brando, P., Chambers, J. Q., da Costa, A. C. L., Hutyra, L. R., Oliveira, P., Patiño, S.,
- Pyle, L. H., Robertson, A. L., and Teixeira, L. M.: Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests, Glob. Change Biol., in press, 2009.
 - Martius, C., Höfer, H., Garcia, M. V. B., Römbke, J., and Hanagarth, W.: Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia, Nutr. Cycl. Agroecosyst., 68, 137–154, 2004.
 - McGroddy ,M. E., Daufresne, T., and Hedin, L. O.: Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial Redfield-type ratios, Ecology, 85, 2390–401, 2004
 Morães, R. M., Carvalho, W. B., and Struffaldy de Vuono, Y.: Litterfall and litter nutrient content in two Brazilian tropical forests, Rev. Bras. Bot. 22, 9–16, 1999.
- Morin, X. and Chuine, I.: Sensitivity analysis of the tree distribution model PHENOFIT to climatic input characteristics: Implications for climate impact assessment, Glob. Change Biol., 9, 1493–1503, 2005.

Myneni, R. B., Yanga, W., Nemani, R. R., Huete, A. R., Dickinsone, R. E., Knyazikhina, Y.,

B	GD										
6, 7565–7597, 2009											
South American litterfall											
J. Chave et al.											
litle	Page										
Abstract	Introduction										
Conclusions	References										
Tables	Figures										
I 4	►I.										
•	•										
Back	Close										
Full Scr	een / Esc										
Printer-frie	ndly Version										
Interactive	Discussion										

Didan, K., Fu, R., Negron Juarez, R. I., Saatchi, S. S., Hashimoto, H., Ichii K., Shabanov, N. V., Tana, B., Ratana, P., Privette, J. L., Morisette, J. T., Vermote, E. F., Roy, D. P., Wolfe, R. E., Friedl, M. A., Running, S. W., Votava, P., El-Saleous, N., Devadiga, S., Su, Y., and Salomonson, V. V.: Large seasonal swings in leaf area of Amazon rainforests, PNAS, 104, 4820–4823, 2007.

Nebel, G., Dragsted, J., and Vega, A. S.: Litter fall, biomass and net primary production in flood plain forests in the Peruvian Amazon, For. Ecol. Manage., 150, 93–102, 2001.

Nepstad, D. C., Moutinho, P., Dias-Filho, M. B., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Vianna, N., Chambers, J., Ray, D., Guerreiros, J. B., Lefebvre, P., Stern-

berg, L., Moreira, M., Barros, L., Ishida, F. Y., Tohlver, I., Belk, E., Kalif, K., and Schwalbe, K.: The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest, J. Geophys. Res. Atm., 107, 8085, doi:10.1029/2001JD000360, 2002.

New, M., Hulme, M., and Jones, P.: Representing twentieth century space-time climate vari-

- ability. Part I. Development of a 1961–1990 mean monthly terrestrial climatology, J. Climate, 12, 829–856, 1999.
 - Norden, N., Chave, J., Belbenoît, P., Caubère, A., Châtelet, P., Forget, P.-M., and Thébaud, C.: Mast fruiting is a frequent strategy in woody species of Eastern South America, PLoS ONE, 2, e1079, 2007.
- Patiño, S., Lloyd, J., Paiva, R., Quesada, C. A., Baker, T. R., Santos, A. J. B., Mercado, L. M., Malhi, Y., Phillips, O. L., Aguilar, A., Alvarez, E., Arroyo, L., Bonal, D., Costa, A. C. L., Czimczik, C. I., Gallo, J., Herrera, R., Higuchi, N., Horna, V., Hoyos, E. J., Jimenez, E. M., Killeen, T., Leal, E., Luizão, F., Meir, P., Monteagudo, A., Neill, D., Núñez-Vargas, P., Palomino, W., Peacock, J., Peña-Cruz, A., Peñuela, M. C., Pitman, N., Priante Filho, N., Prieto, A., Panfil, S.

http://www.biogeosciences-discuss.net/5/2003/2008/.

5

- ³⁰ Priess, J. A., Then, C., and Fölster, H.: Litter and fine-root production in three types of tropical premontane rain forest in SE Venezuela, Plant Ecol., 143, 171–187, 1999.
 - Proctor, J.: Tropical Forest Litterfall. I. Problems of Litter Comparison. in: Tropical Rain Forest: Ecology and Management, edited by: Sutton, S. L., Whitmore, T. C., and Chadwick. A. C.,

DGD											
6, 7565–7597, 2009											
South American litterfall											
J. Chave et al.											
Title F	Page										
Abstract	Introduction										
Conclusions	References										
Tables	Figures										
14	►I.										
•	•										
Back	Close										
Full Scre	en / Esc										
Printer-frien	dly Version										
Interactive I	Discussion										
	•										

DCD

Blackwell, Oxford, 267-273, 1983.

5

25

Puig, H., Riéra, B., and Lescure, J.-P.: Phytomasse et productivité, Bois Forêts Trop., 220, 25–32, 1983.

Quesada, C. A.: Soil Vegetation Interactions Across Amazonia. Unpublished PhD dissertation, University of Leeds, 2008.

- Quesada, C. A., Lloyd, J., Schwarz, M., Patiño, S., Baker, T. R., Czimczik, C. I., Fyllas, N. M., Martinelli, L. A., Nardoto, G. B., Schmerler, J., Santos, A. J. B., Hodnett, M. G., Herrera, R., Luizão, F. J., Arneth, A., Lloyd, G., Dezzeo, N., Hilke, I., Kuhlmann, I., Raessler, M., Moraes Filho, J., Paiva, R, Araujo Filho, R., Chaves, E., Cruz Junior, O., Pimentel, T. P., and Paiva,
- ¹⁰ R.: Chemical and physical properties of Amazonian forest soils in relation to their genesis, Biogeosciences Discuss., accepted, 2009.

Reich, P. B., Uhl, C., Walters, M. B., Prugh, L., and Ellsworth, D. S.: Leaf demography and phenology in Amazonian rain forest: a census of 40 000 leaves of 23 tree species, Ecol. Monogr., 74, 3–23, 2004.

 Röderstein, M., Hertel, D., and Leuschner, C.: Above- and below-ground litter production in three tropical montane forests in Southern Ecuador, J. Trop. Ecol., 21, 483–492, 2005.
 Sakai, S.: Phenological diversity in tropical forests, Pop. Ecol., 43, 77–86, 2001.

Santiago, L. S., Schuur, E. A. G., and Silvera, K.: Nutrient cycling and plant-soil feedbacks along a precipitation gradient in Lowland Panama, J. Trop. Ecol., 21, 461–470, 2005.

Schessl, M., Luiz da Silva, W., and Gottsberger, G.: Effects of fragmentation on forest structure and litter dynamics in Atlantic rainforest in Pernambuco, Brazil, Flora, 203, 215–228, 2008. Schuur, E. A. G.: Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation, Ecology, 84, 1165–1170, 2003.

Scott, D. A., Proctor, J., and Thompson, J.: Studies on a lowland evergreen rain forest on Maraca island, Roraima, Brazil. II. Litter and nutrient cycling, J. Ecol., 80, 705–717, 1992.

- Selva, E. C., Couto, E. G., Johnson, M. S., and Lehmann, J.: Litterfall production and fluvial export in headwater catchments of the southern Amazon, J. Trop. Ecol., 23, 329–335, 2007.
 Silva, C. J., Sanches, L., Bleich, M. E., Lobo, F. A., and Nogueira, J. S.: Produção de serrapilheira no cerrado e floresta de transição Amazônia-Cerrado do Centro-Oeste Brasileiro, Acta Amazonica. 37, 543–548, 2007.
 - Sizer, N. C., Tanner, E. V. J., and Kossmann Ferraz, I. D.: Edge effects on litterfall mass and nutrient concentrations in forest fragments in central Amazonia, J. Trop. Ecol., 16, 853–863, 2000.

6, 7565–7597, 2009

South American litterfall

J. Chave et al.

Smith, K., Gholz, H. L., and Oliveira, F. A.: Litterfall and nitrogen-use efficiency of plantations and primary forest in the eastern Brazilian Amazon, For. Ecol. Manage., 109, 209–220, 1998.

Sombroek W. G.: Amazon land forms and soils in relation to biological diversity, Acta Amazonica, 30, 81–100, 2000.

5

- Vasconcelos, H. L. and Luizão, F. L.: Litter production and litter nutrient concentrations in a fragmented Amazonian landscape, Ecol. Appl., 14, 884–892, 2004.
- Veneklaas, E. J.: Litterfall and nutrient fluxes in two montane tropical rain forests, Colombia, J. Trop. Ecol., 7, 319–336, 1991.
- ¹⁰ Weiher, E. and Keddy, P. A.: Ecological Assembly Rules: Perspectives, Advances, Retreats, Cambridge University Press, Cambridge, 1999.
 - WRB: World Reference Base for Soil Resources. A framework for international classification, correlation and communication, in: World Soil Resources Report, vol. 103, FAO, Rome, 2006.
- ¹⁵ Wright, S. J. and van Schaik, C. P.: Light and the phenology of tropical trees, Am. Nat., 143, 192–199, 1994.
 - Zimmerman, J. K., Wright, S. J., Calderon, O., Aponte Pagan, M., and Paton, S.: Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance, J. Trop. Ecol., 23, 231–251, 2007.

BGD 6, 7565–7597, 2009												
South American litterfall												
J. Chave et al.												
Title	Page											
Abstract	Introduction											
Conclusions	References											
Tables	Figures											
14	►I.											
•	•											
Back	Close											
Full Scre	een / Esc											
Printer-frier	ndly Version											
Interactive	Discussion											

Table 1. Description of the study sites. For each site, the full site name, country, conventional site code and geographical coordinates (long.-lat., in degrees) are reported. Environmental variables include a general descriptor of forest type (LOW: short-statured tropical forest, MON: montane tropical forest, SEC: secondary tropical forest, OG: old-growth tropical forest, FLO: partially flooded tropical forests), dominant soil group (World Reference Base Soil Taxonomy System), the C:N and N:P ratios in leaves, annual rainfall (in mm/yr), and the rainfall seasonality index *SR* (in %). The next column report annual litterfall (Mg/ha/yr), the litterfall seasonality index *SL*, annual leaf fall (in Mg/ha/yr), allocation into reproductive organs (fruits and flowers, in Mg/ha/yr), and the ratio of reproductive litterfall and leaf fall (index RL in %). The sampling strategy includes the duration of litterfall sampling (in yr), the dates at which litterfall was monitored, the size of litterfall traps (in m^2), and the availability of monthly data (Y for yes, N for no). Finally, the reference from which these data were extracted is reported. The C:N and N:P ratios were obtained from Fyllas et al. (2009) for the following sites: AGP1, AGP2, TAM5, TAM6, and TAP1.

Sile name Dirac Unity Oran Job Partal Sile Job Job Job			Site			Forest	Dominant soil					Total		Leaf	Reprod		Monitorina			Trap	Monthly		
Amanagang L Colombia Affer -7.3 -3.7 CG Pinthood 2.8 1.7 2.0 2.0 2.0 2.0 2.00 2.00 2.0 2.00 2.00 2.00	Site name	Country	code	long.	lat.	type	group	C:N	N:P	Rainfall	SR	litterfall	SL	litterfall	litterfall	RL	duration	Interval	# traps	size	data	Reference	
Amacaga and Amacaga	Amacayacu E	Colombia	AGP1	-70.3	-3.72	OG	Plinthosol	21.8	19.70	2888	0.13	7.90	0.02	6.45	0.39	0.060	2.0	2004-2006	25	0.5	Y	This study	
Appel,	Amacayacu U	Colombia	AGP2	-70.3	-3.72	OG	Plinthosol	23.8	20.00	2888	0.13	7.23	0.05	5.78	0.63	0.109	2.0	2004-2006	25	0.5	Y	This study	
partament Bolt -7.8 B.2 O.G Arriso S.2.5 No. Leigh (199) partament BC -7.8 B.2 O.G Arriso S.2.5 No. Leigh (199) partament BC -7.8 B.2.5 No. Leigh (199) partament BC -7.8 B.2.5 No. Leigh (199) partament BC -7.8 B.2.5 No. Arriso (3.1) S.2.5 No. Leigh (199) partament BC -7.8 B.2.5 No. Arriso (3.1) S.2.5 No. Leigh (199) partament BC -7.8 B.2.5 No. Arriso (3.1) No. Leigh (199) BERIC Brail CP -7.5 CP S.2.5 No. Leigh (199) No. Leigh (199) Difference Brail CP -7.7 CP CP Brail CP Brail CP Brail CP Brail CP Brail <td>Apiaú, Roraima</td> <td>Brazil</td> <td>APR</td> <td>-61.3</td> <td>2.57</td> <td>OG</td> <td>Acrisol</td> <td>29.88</td> <td>25.15</td> <td>1902</td> <td>0.47</td> <td>9.17</td> <td>0.08</td> <td>5.57</td> <td>0.28</td> <td>0.050</td> <td>1.0</td> <td>1988-1989</td> <td>6</td> <td>1</td> <td>Y</td> <td>Barbosa and Fearnside (1996)</td>	Apiaú, Roraima	Brazil	APR	-61.3	2.57	OG	Acrisol	29.88	25.15	1902	0.47	9.17	0.08	5.57	0.28	0.050	1.0	1988-1989	6	1	Y	Barbosa and Fearnside (1996)	
packedset Parama BCIC -7.88 B.28 O.G Acrisol Sector A B.21 T B.21 D.22 T B.21 D.21	poachers1	Panamá	BCI1	-79.8	9.28	OG	Acrisol			2617	0.34	11.29		7.53	0.76	0.101	5.0	1988-1992	15	0.25	N	Leigh (1999)	
picehers Parama BGI -78.8 28.0 G Arrian SCI -78.8 28.0 Arrian SCI -78.8 Control Arrian SCI SCI <td>poachers2</td> <td>Panamá</td> <td>BCI2</td> <td>-79.8</td> <td>9.28</td> <td>OG</td> <td>Acrisol</td> <td></td> <td></td> <td>2617</td> <td>0.34</td> <td>12.13</td> <td></td> <td>7.69</td> <td>1.63</td> <td>0.212</td> <td>5.0</td> <td>1988-1992</td> <td>15</td> <td>0.25</td> <td>N</td> <td>Leigh (1999)</td>	poachers2	Panamá	BCI2	-79.8	9.28	OG	Acrisol			2617	0.34	12.13		7.69	1.63	0.212	5.0	1988-1992	15	0.25	N	Leigh (1999)	
pice/serve pice/se	poachers3	Panamá	BCI3	-79.8	9.28	OG	Acrisol			2617	0.34	12.02		7.14	1.02	0.143	5.0	1988-1992	15	0.25	N	Leigh (1999)	
Bitaci Bitaci<	poachers4	Panamá	BCI4	-79.8	9.28	OG	Acrisol			2617	0.34	11.16		6.87	1.02	0.148	4.0	1988-1991	15	0.25	N	Leigh (1999)	
Baserse Baserse Bore For For Sec Sec <t< td=""><td>BDFFP</td><td>Brazil</td><td>BDF1</td><td>-60</td><td>-2.5</td><td>OG</td><td>Ferralsol</td><td>32.19</td><td>51.78</td><td>2470</td><td>0.32</td><td>8.82</td><td></td><td>6.63</td><td>0.60</td><td>0.090</td><td>3.0</td><td>1999-2002</td><td>140</td><td>0.25</td><td>N</td><td>Vasconcelos and Luizao (2004)</td></t<>	BDFFP	Brazil	BDF1	-60	-2.5	OG	Ferralsol	32.19	51.78	2470	0.32	8.82		6.63	0.60	0.090	3.0	1999-2002	140	0.25	N	Vasconcelos and Luizao (2004)	
Bital Bital BDF2 -eb -2.5 SEC Ferration 25.05 9.03 0.09 3.0 1999-2002 1.00 0.25 N Vasconcetand Lucae (2004) ment BDF3P Brazil BDF3 -60 -2.5 G6 Ferration 25.05 90.34 2470 0.32 7.21 0.15 -5.0 3.0 1990-1994 16 1 Y Sizcer et al. (2000) Complex Park Brazil CAP1 -7.2 -7.13 SEC Ferration 31.46 31.44 2471 0.49 5.04 0.11 1979-1980 16 1 Y Dankas and Philipson (1989) Park CAP1 -4.55 -7.2 0.6 Ferration 22.85 0.27 6.31 4.42 0.45 0.16 1.0 1990-1991 30 0.25 Y This study Cackuna tore Brazil CAP1 -7.5 -7.0 G6 Ammos and Philipson 1990 0.3 4.77 0.28 <td< td=""><td>Reserve</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Reserve																						
Header Depinds frager Paria Brazi BDF3 Geb -2.5 Ge Ferailo 3.1.4 2.5.7 3.0.4 2.6.7 0.0.1 1.0.1	BDFFP	Brazil	BDF2	-60	-2.5	SEC	Ferralsol	32.03	54.04	2470	0.32	9.5		7.05	0.63	0.089	3.0	1999-2002	140	0.25	N	Vasconcelos and Luizao (2004)	
Dimons flag. Brazil BFrazil CAP1 -4.7. CA -1.7.3 CA Ferralscol 5.1.0 1.990-1984 1.6 1 Y Subarts and Phillipson (1989) Parial CAP1 -4.7.2 -1.7.3 CA Ferralscol 2.9.0 0.51 1.0 1979-1980 16 1 Y Dantas and Phillipson (1989) Carloba Brazin CAP2 -4.7.2 -1.7.3 CA Ferralscol 2.9.0 0.27 3.9 4.42 0.8 0.181 1.0 1979-1980 30 0.25 Y Moraes et al. (1999) Carloba Island Brazil CAR1 -4.8 -2.51 CA Antropol 2.22 0.27 3.31 4.42 0.8 0.181 1.0 1990-1991 30 0.25 Y Moraes et al. (1999) Carloba Island Brazil CAR1 -7.5 CA Antropol 1.01 0.01 5.00 0.017 3.0 1999-2002 2.4 0.5 Y This study <td>Reserve</td> <td></td>	Reserve																						
Capital Paria Paria CAPI -7.7.3 CAP Paria S1.4	Dimona trag- ment BDFFP	Brazil	BDF3	-60	-2.5	OG	Ferralsol	25.57	30.34	2470	0.32	7.21	0.15				3.0	1990-1994	18	1	Ŷ	Sizer et al. (2000)	
Parial Capitol Parial Capitol Parial Carbins biland CAP2 -1.72 -1.73 SE0 Periade 2.80 1.81 2.47 0.40 5.40 0.40 5.40 0.40	Capitao Paco,	Brazil	CAP1	-47.2	-1.73	OG	Ferralsol	31.46	31.94	2471	0.49	8.04	0.11				1.0	1979-1980	16	1	Y	Dantas and Phillipson (1989)	
Capital Paria CAP2 -7.7.2 -7.7.3 SEC Ferral SO 2.8.7 0.49 5.04 0.65 0.20 0.205 0.25 V Morase et al. (1999) Columbia CHU CAX2 -515 -17.2 OG Farmicol 1199 0.61 6.70 2.3 5.6 0.40 0.178 0.01 3.01 1999-2002 2.4 0.5 Y This study Columbia CH	Pará																						
Parial Cardons bland Cardons bland Cardons bland Brazil CAR -48 -25.1 U/O Arenose -22.2 0.27 0.31 -2.42 0.28 0.18 1.0 1990-1991 30 0.25 Y Morase st al. (1999) Cardons bland Cardons bland Cardons Brazil CAR -81 -7.5 0.75 0.07 Arenose st al. (1999) 0.31 4.77 0.23 6.81 0.10 1.00 1990-1991 30 0.25 Y Morase st al. (1999) Cardons bland Cardons bland Cardons Brazil CAR -51 -1.72 CG Ferritoring Provide Cardons Provide Provide Provide Provide Provi	Capitao Paco,	Brazil	CAP2	-47.2	-1.73	SEC	Ferralsol	29.80	19.51	2471	0.49	5.04	0.16				1.0	1979-1980	16	1	Y	Dantas and Phillipson (1989)	
Cardoos baland meeting cardoos baland meeting cardoos baland meeting cardoos baland meeting Brazil meeting CAR metal meeting -As metal meeting CAR metal meeting -As metal meating CAR metal meeting -As metal meating Sa D.61 meating Markes et al. (1999) Cardoos baland meeting Brazil CAX CAX -51.5 -1.72 OG Ferralsol -222 227 3.21 2.42 0.25 0.26 Y Morase et al. (1999) Cardoo baland meeting CAX -51.5 -1.72 OG Ferralsol -222 227 3.21 2.65 0.01 0.16 2.05 2005-2006 2.5 0.25 Y This study Chrolipolet, Tgoy CAX -724 0.07 CG Arriso 1996 1.6 6.7 2.3 7.0 0.4 1.0 0.10 1.0 1999-2002 2.4 0.5 Y This study Cardoo baland Tgoy Cordina Car	Pará																						
Carclos beland restring a Caduum terming a Caduum t	Cardoso Island	Brazil	CAR1	-48	-25.1	OG				2225	0.27	6.31		4.42	0.8	0.181	1.0	1990-1991	30	0.25	Y	Moraes et al. (1999)	
restring Brazil CAX 8-5.5 -1.72 OG Ferralised Series 0.10 0.20 0.26 0.20 2005-2006 25 0.25 V This study Caduum torm Brazil CAX 8-5.5 -1.72 OG Bernito 0.10 0.21 0.21 0.20 2005-2006 25 0.25 V This study Caduum torm Orthol CHI -7.24 0.07 CO Low Loposo 1990 0.01<	Cardoso Island	Brazil	CAR2	-48	-25.1	LOW	Arenosol			2225	0.27	3.92		2.92	0.25	0.086	1.0	1990-1991	30	0.25	Y	Moraes et al. (1999)	
Cakural torver prefa Brazil CAX CAX -5.5 -1.72 CA Permission	restinga																						
Cackurgenter Brazil CAX2 -5.1 -1.72 OC Anthrosol 2488 0.4 9.17 0.31 6.56 1.20 0.075 2.0 2005-2000 25 0.5 Y This study Chribqueter Colombia CH1 -7.24 0.07 LOW Leptosic 1999 0.10 3.0 1999-2002 24 0.5 Y This study Tippy- Tippy- Chribquete Colombia CH1 -7.24 0.07 G.0 Gambia CH1 -7.24 0.07 G.0 Arriso 1999 0.16 8.45 0.14 0.10 0.28 0.29 0.30 0.999-2002 24 0.5 Y This study Colombia CH1 -7.24 0.07 G.0 Arriso 1999 0.01 6.16 6.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	Caxiuană tower	Brazil	CAX1	-51.5	-1.72	OG	Ferralsol			2489	0.42	7.79	0.23	5.65	0.94	0.166	2.0	2005-2006	25	0.25	Y	This study	
prefact Colombia CHI -7.24 0.70 LCW Leptocol 1 1.80 1.81 0.81 0.99 0.90 0.90 0.90 1.99 0.90 0.90 1.99 0.90 1.99 0.90 1.99 0.90 1.99 0.90 1.99 0.90 1.99 0.90 1.99 0.90 1.99 0.90 1.99 0.90 0.90 0.90 1.99 0.90 1.99 0.90 0.90 0.90 0.90 1.99 0.90 0.90 0.80 0.90 0.90 0.90 1.99 0.90 0.90 0.80 0.90	Caxiuană terra	Brazil	CAX2	-51.5	-1.72	OG	Anthrosol			2489	0.42	9.17	0.31	6.85	1.20	0.175	2.0	2005-2006	25	0.25	Y	This study	
Charbinguent Columbia CHI -7.24 0.07 Low Leptoon 1999 0.13 4.17 0.28 3.29 0.30 0.091 3.0 1999-2002 24 0.5 Y This study Charbinguent, TF Columbia CHI -7.24 0.07 O.6 Carmbias 1 1999 0.16 6.67 0.28 0.70 0.84 0.79 0.81 1999-2002 24 0.5 Y This study Chirblequent, Th Columbia CHI -7.24 0.07 CG Acrisol 1999 0.16 6.67 0.28 0.94 0.10 2.00 200 2.05 Y This study Chirblequent, Th Columbia CHI -7.2 MON Cambias 38.3 13.3 27.8 0.08 0.84 0.16 0.20 0.20 0.20 2.00 0.20 2.00 0.20 2.00 0.20 2.00 0.20 2.00 0.20 0.20 0.20 <t< td=""><td>preta</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	preta																						
Tapuy Topuy Topuy <th< td=""><td>Chiribiquete.</td><td>Colombia</td><td>CHI1</td><td>-72.4</td><td>0.07</td><td>LOW</td><td>Leptosol</td><td></td><td></td><td>1996</td><td>0.13</td><td>4.17</td><td>0.28</td><td>3.29</td><td>0.30</td><td>0.091</td><td>3.0</td><td>1999-2002</td><td>24</td><td>0.5</td><td>Y</td><td>This study</td></th<>	Chiribiquete.	Colombia	CHI1	-72.4	0.07	LOW	Leptosol			1996	0.13	4.17	0.28	3.29	0.30	0.091	3.0	1999-2002	24	0.5	Y	This study	
Chindiguent, TF Columbia CHI2 -7.24 0.07 OG Cambiason 1998 0.16 6.87 0.28 0.70 0.84 0.179 0.0 1999-2002 24 0.5 Y This study Chindiguent, TF Columbia CHI4 -7.24 0.07 CG Arrisol 1999 0.16 6.87 0.19 0.16 0.20 1999-2002 24 0.5 Y This study Chindiguent, TF Columbia CHI4 -7.2 0.07 CG Arrisol 1999 0.16 6.83 0.84 0.14 0.10 0.82 0.01 0.01 0.02 200-2002 24 0.5 Y This study Chindiguent, TF Columbia CHI4 -7.2 Mon Cambiason 38.83 38.83 38.83 0.01 0.01 0.02 0.01 1986-1987 0.0 0.02 0.01 1986-1987 0.0 0.02 0.0 1986-1987 0.0 0.0 0.0 <th< td=""><td>Tepuy</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Tepuy																						
Alla Columbia Columbia <th< td=""><td>Chiribiquete, TF</td><td>Colombia</td><td>CHI2</td><td>-72.4</td><td>0.07</td><td>OG</td><td>Cambisol</td><td></td><td></td><td>1996</td><td>0.16</td><td>6.67</td><td>0.23</td><td>4.70</td><td>0.84</td><td>0.179</td><td>3.0</td><td>1999-2002</td><td>24</td><td>0.5</td><td>Y</td><td>This study</td></th<>	Chiribiquete, TF	Colombia	CHI2	-72.4	0.07	OG	Cambisol			1996	0.16	6.67	0.23	4.70	0.84	0.179	3.0	1999-2002	24	0.5	Y	This study	
Chrickoperts TF Colon CHIA -7.4 0.07 CG Acrisol 1998 0.16 6.45 0.14 0.12 0.13 0.20 1989-2002 24 0.5 Y This study Bial Chrickoperts Colon CHIA -7.4 0.07 CLO Glerysol -7.5 5 MO Cambias 27.6 0.01 27.8 0.76 0.01	Alta																						
Baja Colombia Clu Fraz Clu Fraz Clu Fraz Clu Fraz Clu Sinter Sinter	Chiribiquete TE	Colombia	CHI3	-72.4	0.07	OG	Acrisol			1996	0.16	8.45	0.14	6.11	0.82	0.134	3.0	1999-2002	24	0.5	Y	This study	
Charling Control Columbia CH4 -7.2 0.07 FL0 Gelaya 1.098 0.16 8.39 0.84 0.94 0.161 2.0 2004-2006 25 0.5 Y This study Control control Columbia COC -7.5 5 MON Cambias 38.8 278 0.01 2.00 0.06 1.00 1.00 1.00 1.00 2.00 0.01 1.00 1.00 2.00 0.01 0.01 1.00 1.00 2.00 0.01 0.01 1.00 1.00 2.00 2.00 0.01 1.00 1.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	Baia																						
Brachate Colombia	Chiribiquete	Colombia	CHI4	-72.4	0.07	FLO	Glevsol			1996	0.16	8.39	0.08	5.83	0.94	0 161	2.0	2004-2006	25	0.5	Y	This study	
Consigning Care, Consigning Care, Car	Rohalso	oolombia	01114	72.4	0.07	. 20	aloyson			1000	0.10	0.00	0.00	0.00	0.04	0.101	2.0	2004 2000	20	0.0		This study	
India Scolumal Control For India Control Solution For	Cordillera Cen-	Colombia	COC1	-75	5	MON	Cambisol	28.63	13.43	2763	0.04	7.03	0.01	4.61	0.66	0 143	1.0	1986-1987	10	0.25	v	Veneklass (1991)	
Conditional Con- transitional Con- strained Con- transitional Con- conditional Con- conditional Con- strained Con- transitional Con- conditional Con- conditi Con- conditional Con- conditional Con- conditional Con	tral 2550 m acl	COlombia	0001	-75	5	NON	Gambisoi	30.05	10.40	2703	0.04	7.00	0.01	4.01	0.00	0.140	1.0	1300-1307	10	0.20		vellekiddə (1551)	
Outside of the control of th	Cardillara Can	Colombio	0000	75		MON	Combinal	50.71	10.00	0760	0.04	4.01	0.10	0.00	0.07	0.000	1.0	1006 1007	00	0.05	v	Venekleen (1001)	
Line AS JOINTAGE Brazil CUR1 -6.0 -2.58 O.G Ferralsol 24.59 48.71 2442 0.34 8.25 0.09 5.42 0.42 0.077 3.0 1979-1982 15 0.5 Y Luizzo (1989) More Planu Brazil CUR2 -6.01 -2.58 FLO Podzol 30.72 29.46 2442 0.34 6.94 0.43 0.092 3.0 1979-1982 15 0.5 Y Luizzo (1989) Outerins Re- some Platau Brazil CUR3 -6.0 -2.57 O.G Ferralsol 22.9 2442 0.34 6.6 6.64 10 0.25 N Luizzo et al. (2004) Cuelers Re- serve Stope Brazil CUR4 -6.01 -2.57 O.G Arrisol 2.942 2.442 0.34 7.6 6.16 -2 10 0.25 N Luizzo et al. (2004) Cuelers Re- serve Valley CUR5 -6.1 -2.58 FLO Podzol 35.8 2.442 0.34 7.6 6.67 1.38 0.198 1.0 1994-1995	trol 2270 m col	Colombia	0002	-/5	5	WON	Campisor	50.71	10.00	2763	0.04	4.51	0.10	2.02	0.27	0.096	1.0	1900-1907	20	0.25	1	Vellekiaas (1991)	
Diracial Outrie -2.58 OIG Permation 24.42 0.34 7.44 0.03 3.42 0.42 0.17 5.01 19/9-1982 15 0.5 Y Luizao (1989) Contrains Re- serve Valley Guardias Re- serve Valley Guardias Re- contraints Re- serve Valley Fund 0.04 3.7.4 0.07 4.50 0.01 5.0 19/9-1982 15 0.5 Y Luizao (1989) serve Valley Curles Re- serve Valley Curles Re- contraints Re- serve Valley Curles Re- Curles Re- serve Valley Curles Re- Curles Re- contraints Re- contra	Cuisime De	Desail	CUD1	60.1	0.50	00	Femaleol	04.50	40.71	0440	0.24	0.05	0.00	E 40	0.40	0.077	2.0	1070 1090	15	0.5	v	Luines (1080)	
Brazil CUR2 -0.1 -2.58 FLO Podzol 30.72 29.46 24.42 0.34 7.44 0.07 4.69 0.43 0.082 3.0 1979-1982 15 0.5 Y Luizzo (1989) sarrev Nalley Brazil CUR3 -6.0 -2.57 OG Ferralsol 22.99 2442 0.34 7.64 0.07 4.69 0.43 0.082 3.0 1979-1982 15 0.5 Y Luizzo (1989) Curais Fib- sorve Stopp Brazil CUR4 -6.0 -2.57 OG Arrisol 23.92 2442 0.34 7.6 6.16 10 0.25 N Luizzo et al. (2004) Curais Fib- sorve Stopp Brazil CUR5 -6.1 -2.58 FLO Podzol 35.8 2442 0.34 7.6 6.6 4.88 10 0.25 N Luizzo et al. (2004) Curais Fib- sorve Valley Curais Fib- Sorve Valley -2 OG Ferralsol 37.92 1714 0.42 9.7 0.15 6.87 1.36 0.198 1.0 1984-1984 10<	Culeilas ne-	DIdZII	CURI	-00.1	-2.30	UG	Ferraisor	24.39	40.71	2442	0.34	0.25	0.09	3.42	0.42	0.077	3.0	19/9-1902	15	0.5	1	Luizao (1969)	
Understand- serves Brazil Brazil CURS -60.1 -2.57 -2.57 CG Formation 24.42 0.34 7.44 0.07 4.09 0.43 0.092 3.0 1919-1982 15 0.5 T Luzzo et al. (2004) Colletions Re- serves Nige Grazil CURS -60.1 -2.57 OG Formation 23.92 2442 0.34 6.9 6.94 10 0.25 N Luzzo et al. (2004) serves Nige Curlet -6.01 -2.57 OG Arritol 0.34 6.6 4.88 10 0.25 N Luzzo et al. (2004) collenians Re- serves Nige Curlet -54 -2 OG Ferralisol 37.92 1714 0.42 9.7 0.15 6.67 1.36 0.198 1.0 1994-1995 45 1 Y Smith et al. (1998) Curlui-Liva Frazi CUU -54 -2 OG Ferralisol 37.92 1714 0.42 9.7 0.15 6.67 1.0 <td>serve Plateau</td> <td>D</td> <td>01100</td> <td></td> <td>0.50</td> <td>F1 O</td> <td>De staat</td> <td>00.70</td> <td>00.40</td> <td></td> <td></td> <td></td> <td>0.07</td> <td>4.00</td> <td>0.40</td> <td></td> <td></td> <td>4070 4000</td> <td></td> <td></td> <td></td> <td>1</td>	serve Plateau	D	01100		0.50	F 1 O	De staat	00.70	00.40				0.07	4.00	0.40			4070 4000				1	
Brazil Curias An- Sources An- Brazil Curia Curia -2.57 O.G Ferralsol 22.99 2442 0.34 8.9 6.94 10 0.25 N Luizao et al. (2004) Curias An- Brazil Surve Stope Brazil Brazi CUR4 -6.01 -2.57 O.G Acrisol 23.92 2442 0.34 8.9 6.64 10 0.25 N Luizao et al. (2004) Surve Stope Brazil Brazi CUR4 -6.01 -2.58 F.O Podzol 35.8 2442 0.34 6.6 4.85 10 0.25 N Luizao et al. (2004) Curiad-Una Brazil CUU -54 -2 O.G Ferralsol 37.92 1714 0.42 9.7 0.15 6.87 1.38 0.198 1.0 1984-1986 45 1 Y Smith et al. (1998) Reserve Brazil DUC -58 -2.72 O.G Ferralsol 31.11 48.00 250 0.33 7.3 5.60 0.35 0.063<	Culeiras Re-	Brazil	CUH2	-60.1	-2.58	FLO	Podzol	30.72	29.46	2442	0.34	7.44	0.07	4.69	0.43	0.092	3.0	1979-1982	15	0.5	Ŷ	Luizao (1989)	
Understrate- Grangement- Brazil Brazil CUR4 -6.0.1 -2.57 OG Acrisol 22.49 24.42 0.34 8.34 10 0.25 N Luzzo et al. (2004) Collerings File Brazil CUR4 -60.1 -2.57 OG Acrisol 2442 0.34 7.6 6.16 10 0.25 N Luzzo et al. (2004) Schemas File Brazil CUR5 -6.0.1 -2.57 OG Acrisol 10 0.25 N Luzzo et al. (2004) Schemas File Brazil CUR5 -6.0.1 -2.58 FLO Podzol 3.5.6 2.442 0.34 6.6 4.88 10 0.25 N Luzzo et al. (2004) Curul-Una Brazil CUU -54 -2 OG Ferralsol 37.92 1714 0.42 9.7 0.15 6.87 1.0 1994-1995 45 1 Y Smith et al. (1998) Reserver Reserver Reserver Reserver 10.0	serve Valley					~ ~																	
Brazil CUFA -0.1 -2.57 OG Acrisol 23.92 2442 0.34 7.6 6.16 10 0.25 N Luizzo et al. (2004) Cumins Person Brazil CUFA -0.01 -2.58 FLO Podzol 35.86 2442 0.34 7.6 6.16 10 0.25 N Luizzo et al. (2004) Cumins Person Brazil CUFA -0.01 -2.58 FLO Podzol 35.86 2442 0.34 6.6 4.88 10 0.25 N Luizzo et al. (2004) Cumis-Unia Brazil CUU -54 -2 OG Fernalsol 37.92 1714 0.42 9.7 0.15 6.87 1.06 0.198 1.0 1994–1995 45 1 Y Smith et al. (1998) Reserver Reserver Brazil DUC -58.8 -2.72 OG Fernalsol 31.11 48.00 2250 0.33 7.3 5.60 0.35 0.663 <td< td=""><td>Culeiras Re-</td><td>Brazil</td><td>COH3</td><td>-60.1</td><td>-2.57</td><td>OG</td><td>Ferralsol</td><td>22.99</td><td></td><td>2442</td><td>0.34</td><td>8.9</td><td></td><td>6.94</td><td></td><td></td><td></td><td></td><td>10</td><td>0.25</td><td>N</td><td>Luizao et al. (2004)</td></td<>	Culeiras Re-	Brazil	COH3	-60.1	-2.57	OG	Ferralsol	22.99		2442	0.34	8.9		6.94					10	0.25	N	Luizao et al. (2004)	
Cueleris free Brazil CUH4 -B0.1 -2.57 Ois Acresol 23.92 2442 0.34 7.5 6.16 10 0.25 N Luizao et al. (2004) Cueleris fiele Brazil CUH6 -6.01 -2.58 FLO Podzol 35.86 2442 0.34 6.6 4.88 10 0.25 N Luizao et al. (2004) serve Valley Curui-Una Brazil CUU -54 -2 OG Ferraisol 37.92 1714 0.42 9.7 0.15 6.87 1.36 0.198 1.0 1994-1995 45 1 Y Smith et al. (1998) Reserve Brazil DUC -58.8 -2.72 OG Ferraisol 31.11 48.00 2250 0.33 7.3 5.60 0.35 0.063 1.0 1963-1964 10 0.25 N Kinge and Rodrigues (1968) Reserve Reserve OG Ferraisol 50.92 83.40 1573 0.30	serve Plateau					~ ~																	
sarve slope Curres Ra- more Valley Meanward Ducke Forest Brazil DUC -59.8 -2.72 OG Ferralsol 31.11 48.00 2250 0.33 7.3 5.60 0.35 0.063 1.0 1994-1995 45 1 Y Smith et al. (1998) Reserve Ducke Forest Brazil DUC -59.8 -2.72 OG Ferralsol 31.11 48.00 2250 0.33 7.3 5.60 0.35 0.063 1.0 1983-1964 10 0.25 N Kiloge and Rodrigues (1968) Reserve Gran Sabaran, Venezuela GRS1 -61.3 5 OG Ferralsol 50.92 83.40 1573 0.30 5.19 0.18 1.0 1999-2000 8 0.5 Y Dezzeo and Chacon (2006)	Culeiras Re-	Brazil	CUH4	-60.1	-2.57	OG	Acrisol	23.92		2442	0.34	7.6		6.16					10	0.25	N	Luizao et al. (2004)	
Culeiras Re- Brazil CURS -60.1 -2.58 FLO Podzol 35.86 2442 0.34 6.6 4.88 10 0.25 N Luizao et al. (2004) Serve Valley Curuá-Una Brazil CUU -54 -2 OG Ferralsol 37.92 1714 0.42 9.7 0.15 6.87 1.36 0.198 1.0 1994-1995 45 1 Y Smith et al. (1998) Reserve Ducke Forest Brazil DUC -59.8 -2.72 OG Ferralsol 31.11 48.00 2250 0.33 7.3 5.60 0.35 0.063 1.0 1963-1964 10 0.25 N Klinge and Rodrigues (1968) Reserve Gran Salaman, Venezuela GRS1 -61.3 5 OG Ferralsol 50.92 83.40 1573 0.30 5.19 0.18 1.0 1999-2000 8 0.5 Y Dezzeo and Chacon (2006)	serve Slope																						
earre Valley Curul-Una Ducke Freest Rearev Gran Sahama, Venezuela GRS1 –61.3 5 OG Ferralsol 50.92 83.40 1573 0.30 5.19 0.18 Usayana Gran Sahama, Venezuela GRS1 –61.3 5 OG Ferralsol 50.92 83.40 1573 0.30 5.19 0.18 Usayana	Culeiras Re-	Brazil	CUH5	-60.1	-2.58	FLO	Podzol	35.86		2442	0.34	6.6		4.88					10	0.25	N	Luizao et al. (2004)	
Curusk-Una Brazil CUU –54 –2 OG Ferralsol 37.92 1714 0.42 9.7 0.15 6.87 1.38 0.198 1.0 1994–1995 45 1 Y Smith et al. (1999) Beserve Ducke Forest Brazil DUC –59.8 –2.72 OG Ferralsol 31.11 48.00 2250 0.33 7.3 5.60 0.35 0.063 1.0 1963–1964 10 0.25 N Klinge and Rodrigues (1968) Reserve Gran Salama, Venezuela GRS1 –61.3 5 OG Ferralsol 50.92 83.40 1573 0.30 5.19 0.18 1.0 1999–2000 8 0.5 Y Dezzeo and Chacon (2006) Guayana	serve Valley																						
Reserve Ducke Forest Brazil DUC59.82.72 OG Ferralsol 31.11 48.00 2250 0.33 7.3 5.60 0.35 0.063 1.0 1963-1964 10 0.25 N Klinge and Rodrigues (1968) Reserve Gran Sabana, Venezuela GRSI61.3 5 OG Ferralsol 50.92 83.40 1573 0.30 5.19 0.18 1.0 1999-2000 8 0.5 Y Dezzeo and Chacon (2006) Guayana	Curuá-Una	Brazil	CUU	-54	-2	OG	Ferralsol	37.92		1714	0.42	9.7	0.15	6.87	1.36	0.198	1.0	1994-1995	45	1	Y	Smith et al. (1998)	
Ducke Forest Brazil DUC -59.8 –2.72 OG Ferralsol 31.11 48.00 2250 0.33 7.3 5.60 0.35 0.063 1.0 1963–1964 10 0.25 N Klinge and Rodrigues (1968) Reserve Gran Salama, Venezuela GRS1 –61.3 5 OG Ferralsol 50.92 83.40 1573 0.30 5.19 0.18 1.0 1999–2000 8 0.5 Y Dezzeo and Chacon (2006) Guayana	Reserve																						
Reserve Gran Sabana, Venezuela GRS1 –61.3 5 OG Ferralsol 50.92 83.40 1573 0.30 5.19 0.18 1.0 1999–2000 8 0.5 Y Dezzeo and Chacon (2006) Guayana	Ducke Forest	Brazil	DUC	-59.8	-2.72	OG	Ferralsol	31.11	48.00	2250	0.33	7.3		5.60	0.35	0.063	1.0	1963-1964	10	0.25	N	Klinge and Rodrigues (1968)	
Gran Sabana, Venezuela GRS1 –61.3 5 OG Ferralsol 50.92 83.40 1573 0.30 5.19 0.18 1.0 1999–2000 8 0.5 Y Dezzeo and Chacon (2006) Guayana	Reserve																						
Guayana	Gran Sabana,	Venezuela	GRS1	-61.3	5	OG	Ferralsol	50.92	83.40	1573	0.30	5.19	0.18				1.0	1999-2000	8	0.5	Y	Dezzeo and Chacon (2006)	
	Guayana																						

BGD

6, 7565-7597, 2009

South American litterfall

J. Chave et al.

Table 1. Continued.

		Site			Forest	Dominant soil					Total		Leaf	Reprod		Monitorina			Trap	Monthly	
Site name	Country	code	long.	lat.	type	group	C:N	N:P	Rainfall	SR	litterfall	SL	litterfall	litterfall	RL	duration	Interval	# traps	size	data	Reference
Gran Sabana, Guavana	Venezuela	GRS2	-61.3	5	OG	Ferralsol	56.21	86.83	1573	0.30	5.64	0.18				1.0	1999-2000	8	0.5	Υ	Dezzeo and Chacon (2006)
Gran Sabana, Guayana	Venezuela	GRS3	-61.3	5	LOW	Ferralsol	59.19	76.62	1573	0.30	3.93	0.10				1.0	1999-2000	8	0.5	Υ	Dezzeo and Chacon (2006)
Guama, Para Jari, Para	Brazil Brazil	GUA JAR1	-48.5 -52	-1.37 -1	OG OG	Ferralsol Ferralsol	28.56	38.05	2751 2293	0.40 0.39	9.9 10.74	0.20	8.00 7.84	1.16	0.148	1.0	2004-2005	100	0.25	N Y	Klinge (1977) Barlow et al. (2007)
primary Jari, Para	Brazil	JAR2	-52	-1	SEC	Ferralsol			2293	0.39	8.45	0.19	6.92	0.48	0.069	1.0	2004-2005	100	0.25	Y	Barlow et al. (2007)
Rio Juruena Maracá Island.	Brazil Brazil	JUR MAI1	-58.8 -61.4	-10.4 3.37	OG FLO	Acrisol Acrisol	38.14	18.44	1970 1572	0.50 0.49	11.8 7.93	0.36	5.90 5.44	0.71	0.131	1.0 1.0	2003-2004	15 33	0.32	Y Y	Selva et al. (2007) Villela and Proctor (1999)
Peltogyne-rich forest																					· · · · · · · · · · · · · · · · · · ·
Maracá Island, Peltogyne poor forest	Brazil	MAI2	-61.4	3.37	FLO	Acrisol	38.14	19.34	1572	0.49	9.07	0.05	6.02	0.92	0.153	1.0	1991–1992	33	0.32	Y	Villela and Proctor (1999)
Maracá Island, Forest without Peltogyne	Brazil	MAI3	-61.4	3.37	FLO	Acrisol	38.14	19.34	1572	0.49	8.58	0.07	5.92	0.93	0.157	1.0	1991-1992	33	0.32	Y	Villela and Proctor (1999)
Maracá Island	Brazil	MAI4	-61.4	3.37	FLO	Acrisol	35.42	17.60	1572	0.49	9.28	0.06	6.3	1.21	0.192	1.0	1987-1988	27	1	Y	Scott et al. (1992)
Manaus Floresta Manaus	Brazil	MAN1	-59.9	-3.13	OG	Ferralsol	31.69		2169	0.32	8.71	0.15	6.03	0.46	0.076	2.0	1997-1999	20	0.25	Y	Martius et al. (2004)
Secondary	Brazil	MDP1	-35.2	-7.83	06	Acrisol	34.09		1206	0.32	12.30	0.21	8.55	0.32	0.037	1.0	2003-2004	10	0.25	Y	Schessl et al. (2008)
de Piedade Mata	Brazil	MDP2	-35.2	-7.83	SEC	Acrisol			1206	0.43	14.74	0.27	11.01	0.75	0.068	1.0	2003-2004	10	0.25	Y	Schessl et al. (2008)
de Piedade Medio Río	Colombia	MRC1	-72.5	-0.42	FLO	Acrisol/Alisol	26.95	68.02	2289	0.09	10.7		7.10	0.15	0.021	1.0	1989–1990	15	0.25	N	Lips and Duivenvoorden (1996)
Caqueta Medio Río Caquetá	Colombia	MRC2	-72.5	-0.42	OG	Acrisol/Alisol	29.03	103.13	2289	0.09	6.9		6.10	0.05	0.008	1.0	1989–1990	15	0.25	Ν	Lips and Duivenvoorden (1996)
Medio Río Caquetá	Colombia	MRC3	-72.5	-0.42	OG	Acrisol/Alisol	37.19	118.24	2289	0.09	8.6		6.77	0.47	0.069	1.0	1989–1990	15	0.25	Ν	Lips and Duivenvoorden (1996)
Medio Río Caquetá	Colombia	MRC4	-72.5	-0.42	OG	Acrisol/ Ferralsol	30.20	110.37	2289	0.09	6.8		5.40	0.33	0.061	1.0	1989-1990	15	0.25	N	Lips and Duivenvoorden (1996)
Medio Río Caquetá	Colombia	MRC5	-72.5	-0.42	OG	Arenosol	41.28	74.52	2289	0.09	6.23		5.36	0.19	0.035	1.0	1989-1990	15	0.25	N	Lips and Duivenvoorden (1996)
Nouragues Petit Plateau	French Guiana	NOR1	-52.7	4.08	OG	Ferralsol/lep- tosol associa- tion	25.4		3476	0.29	8.23	0.24	5.94	0.67	0.113	7.0	2001-2008	15	0.5	Y	This study
Nouragues Grand Plateau	French Guiana	NOR2	-52.7	4.08	OG	Ferralsol	21.6		3476	0.29	10.05	0.23	6.75	0.82	0.121	7.0	2001-2008	25	0.5	Y	This study
Nova Xavantina cerradao	Brazil	NXA1	-52.3	-14.7	LOW	Ferralsol			1501	0.55	1.046	0.27	0.49	0.17	0.347	1.0	2002-2003	10	1	Y	Silva et al. (2007)
Nova Xavantina cerrado	Brazil	NXA2	-52.3	-14.7	LOW	Ferralsol			1501	0.55	0.62	0.41	0.27	0.24	0.889	1.0	2002-2003	20	1	Y	Silva et al. (2007)
Paracou Podocarpus	French Guiana Ecuador	PAR PNP1	-52.54 -79.1	5.16 -3.97	OG MON	Acrisol Cambisol			3041 1084	0.34 0.10	8.30 13.26	0.11	4.20 8.62	0.55	0.131	5.0 1.0	2003–2008 2001–2002	40 12	0.45 0.16	Y N	This study Röderstein et al. (2005)
Podocarpus	Ecuador	PNP2	-79.1	-3.97	MON	Cambisol			1084	0.10	6.66		4.33			1.0	2001-2002	12	0.16	N	Röderstein et al. (2005)
Podocarpus National Park	Ecuador	PNP3	-79.1	-3.97	MON	Cambisol			1084	0.10	4.05		2.63			1.0	2001-2002	12	0.16	Ν	Röderstein et al. (2005)
Panama Transect	Panamá	PRT1	-80	8	OG	Acrisol	46.88	11.85	1620	0.36	12.47		9.47	0.94	0.099	1.0	2001-2002	10	0.25	Ν	Santiago et al. (2005)
Panama Transect	Panamá	PRT2	-80	8	OG	Acrisol	33.58	28.51	1620	0.39	10.03		6.33	1.40	0.221	1.0	2001-2002	10	0.25	N	Santiago et al. (2005)
Panama Transect	Panamá	PRT3	-79.5	8	OG	Histosol	39.82	33.24	1756	0.36	10.51		6.45	1.79	0.278	1.0	2001-2002	10	0.25	N	Santiago et al. (2005)
Panama Transect	Panamá	PRT4	-79.5	8	OG	Acrisol	35.16	34.59	1756	0.29	9.79		6.74	0.64	0.095	1.0	2001-2002	10	0.25	N	Santiago et al. (2005)
Piste de Saint Elie	French Guiana	PSE	-54	5.33	OG	Ferralsol			2530	0.21	7.89	0.19	5.31	0.90	0.169	3.0	1978-1981	60	1	Y	Puig et al. (1990)
San Carlos tall forest	Venezuela	SCR1	-67.1	1.9	OG	Ferralsol	33.00	10.90	3463	0.15	10.25		7.57	0.40	0.053	1.0	1980-1981	10	0.5	N	Cuevas and Medina (1986)
San Carlos caatinga	Venezuela	SCR2	-67.1	1.9	SEC	Podzol	41.00	12.10	3463	0.15	5.61		3.99	0.21	0.053	1.0	1980-1981	10	0.5	N	Cuevas and Medina (1986)
San Carlos bana	Venezuela	SCR3	-67.1	1.9	LOW	Podzol			3463	0.15	2.43	0.07	2.07	0.12	0.058	1.0	1980-1981	10	0.5	N	Cuevas and Medina (1986)
Tambonata	Peru	TAM5	-55.3	-11.4	FLO	Cambisol	21.1	22.80	2105	0.51	ь.57 11.21	0.27	5.55 8.36	1.00	0.049	2.0	2002-2003	20	0.25	Y	Silva er al. (2007) This study
Tambopata	Peru	TAM6	-69.7	-12.8	OG	Cambisol	19.6	13.20	2417	0.31	9.43	0.19	7.09	1.05	0.148	2.0	2005-2006	25	0.25	Ŷ	This study

BGD

6, 7565-7597, 2009

South American litterfall

J. Chave et al.

Interactive Discussion

BGD

6, 7565-7597, 2009

South American litterfall

J. Chave et al.

Title Page Introduction Abstract Conclusions References Figures Tables 14 ◀ ► Close Back Full Screen / Esc Printer-friendly Version Interactive Discussion

Table 1. Continued.

Site name	Country	Site code	long.	lat.	Forest type	Dominant soil group	C:N	N:P	Rainfall	SR	Total litterfall	SL	Leaf litterfall	Reprod litterfall	RL	Monitoring duration	Interval	# traps	Trap size	Monthly data	Reference
Tapajos forest	Brazil	TAP1	-55	-2.85	OG	Ferralsol	20.50	30.10	2142	0.44	6.43		4.50			6.0	2000-2005	25	0.5	N	Brando et al. (2008)
Tapajos exclusion	Brazil	TAP2	-55	-2.85	OG	Ferralsol			2142	0.44	6.4		4.48			6.0	2000-2005	25	0.5	N	Brando et al. (2008)
Tucuri	Brazil	TUC	-49.7	-3.77	OG	Ferralsol	21.96	40.09	2480	0.52	6.65		4.76							N	Silva (1984)
Río Ucayali	Perú	UCA1	-73.7	-4.92	OG	Fluvisol/Gleyso	1		2631	0.11	7.02	0.17	4.17	0.97	0.233	1.0	1997-1998	25	0.25	Y	Nebel et al. (2001)
Río Ucayali	Perú	UCA2	-73.7	-4.92	OG	Fluvisol/Gleyso	1		2631	0.11	7.14		4.30	1.15	0.267	1.0	1997-1998	25	0.25	Y	Nebel et al. (2001)
Río Ucayali	Perú	UCA3	-73.7	-4.92	OG	Fluvisol/Gleyso	1		2631	0.11	6.93		4.11	1.23	0.299	1.0	1997-1998	25	0.25	Y	Nebel et al. (2001)
Yuruani tall forest	Venezuela	YUR1	-61	5	OG	Ferralsol			1573	0.31	6.3	0.20	4.76	0.54	0.113	2.0	1990-1991	10	1	Y	Priess et al. (1999)
Yuruani medium forost	Venezuela	YUR2	-61	5	LOW	Ferralsol			1573	0.31	4.97	0.21	3.99	0.21	0.053	2.0	1990–1991	10	1	Y	Priess et al. (1999)
Yuruani low forest	Venezuela	YUR3	-61	5	SEC	Ferralsol			1573	0.31	5.33	0.06	4.22	0.39	0.092	2.0	1990-1991	10	1	Y	Priess et al. (1999)
Zafire varrilal	Colombia	ZAR1	-69.9	-4	LOW	Podzol			2828	0.14	5.02	0.18	3.79	0.50	0.132	2.0	2004-2006	25	0.5	Y	This study
Zafire flooded	Colombia	ZAR2	-69.9	-4	FLO	Gleysol			2828	0.14	9.72	0.09	6.66	1.22	0.183	1.5	2005-2006	25	0.5	Y	This study
Zafire TF	Colombia	ZAR3	-69.9	-4	OG	Cambisol			2828	0.14	8.82	0.18	6.71	0.63	0.094	2.0	2004-2006	25	0.5	Y	This study
Zafire Altura	Colombia	ZAR4	-69.9	-4	OG	Alisol			2828	0.14	9.51	0.17	6.96	0.90	0.129	1.5	2005-2006	25	0.5	Y	This study

Fig. 1. Seasonality patterns for total litterfall at six sites (for site names, see Table 1). Thick lines delineate the envelope of monthly litterfall. The sites are ranked by increasing seasonality from left to right and top to bottom. Seasonality was measured using the equations reported in the Methods.

Fig. 2. Total annual litterfall (in Mg/ha/yr) in different forest types. LOW: short-statured tropical forests (see Methods for a description), MON: montane tropical forests, SEC: secondary tropical forests, OG: old-growth tropical forests, FLO: partially flooded tropical forests. For each forest type, the thick horizontal lines represents the mean, the box represents the standard deviations (possibly asymmetrical), and the dotted line represents the 95% confidence intervals. Two outliers were detected, both above 12 Mg/ha/yr (dots).

Fig. 3. Regional variation in litterfall. Variation in total litterfall across the sites **(a)**, only in oldgrowth forests **(b)**, variation in leaf fall **(c)** and variation in allocation into reproductive organs **(d)**. All figures are in Mg/ha/yr.

BGD 6, 7565-7597, 2009 South American litterfall J. Chave et al. **Title Page** Abstract Introduction References Conclusions **Figures Tables** 14 Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Fig. 5. Total annual litterfall (in Mg/ha/yr) on different soil types. Soil types are based on the WRB taxonomy (for more details, see Methods and Quesada 2008). Soil types are as follows. A: arenosols/podzols; B: ferrasols; C: acrisols/plinthosols/alisols; D: cambisols/leptosols/histosols/gleysols/fluvisols. The notations of this figure are the same as in Fig. 2.

BGD

6, 7565-7597, 2009

South American litterfall

J. Chave et al.

Fig. 6. Total annual litterfall (in Mg/ha/yr) versus leaf nutrient content. Left panel: litterfall versus C:N ratio. The regression was not significant (dashed line). Right panel: litterfall versus N:P ratio. A significant decline in litterfall with N:P was observed (dashed line).

Interactive Discussion

7595

Fig. 9. Relative investment into reproduction relative to the investment into photosynthesis (*RL* ratio) versus N:P ratio. The regression line shows a declining relationship between these two variables, suggesting that plants invest relatively less into reproduction in phosphorus-deprived environments (r^2 =0.12, p=0.07). Color codes show forest types as in Fig. 4.